160 research outputs found

    Image Quality Assessment by Saliency Maps

    Get PDF
    Image Quality Assessment (IQA) is an interesting challenge for image processing applications. The goal of IQA is to replace human judgement of perceived image quality with a machine evaluation. A large number of methods have been proposed to evaluate the quality of an image which may be corrupted by noise, distorted during acquisition, transmission, compression, etc. Many methods, in some cases, do not agree with human judgment because they are not correlated with human visual perception. In the last years the most modern IQA models and metrics considered visual saliency as a fundamental issue. The aim of visual saliency is to produce a saliency map that replicates the human visual system (HVS) behaviour in visual attention process. In this paper we show the relationship between different kind of visual saliency maps and IQA measures. We particularly perform a lot of comparisons between Saliency-Based IQA Measures and traditional Objective IQA Measure. In Saliency scientific literature there are many different approaches for saliency maps, we want to investigate which is best one for IQA metrics

    Saliency Map for Visual Perception

    Get PDF
    Human and other primates move their eyes to select visual information from the scene, psycho-visual experiments (Constantinidis, 2005) suggest that attention is directed to visually salient locations in the image. This allows human beings to bring the fovea onto the relevant parts of the image, to interpret complex scenes in real time. In visual perception, an important result was the discovery of a limited set of visual properties (called pre attentive), detected in the first 200-300 milliseconds of observation of a scene, by the low-level visual system. In last decades many progresses have been made into research of visual perception by analyzing both bottom up (stimulus driven) and top down (task dependent) processes involved in human attention. Visual Saliency deals with identifying fixation points that a human viewer would focus on the first seconds of the observation of a scene

    Detection of Duplicated Regions in Tampered Digital Images by Bit-Plane Analysis

    Get PDF
    In this paper we present a new method for searching duplicated areas in a digital image. The goal is to detect if an image has been tampered by a copy-move process. Our method works within a convenient domain. The image to be analyzed is decomposed in its bit-plane representation. Then, for each bitplane, block of bits are encoded with an ASCII code, and a sequence of strings is analyzed rather than the original bit-plane. The sequence is lexicographically sorted and similar groups of bits are extracted as candidate areas, and passed to the following plane to be processed. Output of the last planes indicates if, and where, the image has been altered

    Copy-move Forgery Detection via Texture Description

    Get PDF
    Copy-move forgery is one of the most common type of tampering in digital images. Copy-moves are parts of the image that are copied and pasted onto another part of the same image. Detection methods in general use block-matching methods, which first divide the image into overlapping blocks and then extract features from each block, assuming similar blocks will yield similar features. In this paper we present a block-based approach which exploits texture as feature to be extracted from blocks. Our goal is to study if texture is well suited for the specific application, and to compare performance of several texture descriptors. Tests have been made on both uncompressed and JPEG compressed images

    Saliency Based Image Cropping

    Get PDF
    Image cropping is a technique that is used to select the most relevant areas of an image and discarding the useless parts. Handmade selection, especially in case of large photo collections, is a time consuming task. Automatic image cropping techniques may help users, suggesting to them which part of the image is the most relevant, according to specific criteria. In this paper we suppose that the most visually salient areas of a photo are also the most relevant ones to the users. We compare three different saliency detection methods within an automatic image cropping system, to study the effectiveness of the related saliency maps for this task. We furthermore extended one of the three methods (our previous work), which is based on the extraction of keypoints from the image. Tests have been conducted onto an online available dataset, made of 5000 images which have been manually labeled by 9 users

    Scale detection via keypoint density maps in regular or near-regular textures

    Get PDF
    In this paper we propose a new method to detect the global scale of images with regular, near regular, or homogenous textures. We define texture ‘‘scale’’ as the size of the basic elements (texels or textons) that most frequently occur into the image. We study the distribution of the interest points into the image, at different scale, by using our Keypoint Density Maps (KDMs) tool. A ‘‘mode’’ vector is built computing the most frequent values (modes) of the KDMs, at different scales. We observed that the mode vector is quasi linear with the scale. The mode vector is properly subsampled, depending on the scale of observation, and compared with a linear model. Texture scale is estimated as the one which minimizes an error function between the related subsampled vector and the linear model. Results, compared with a state of the art method, are very encouraging

    Copy-Move Forgery Detection by Matching Triangles of Keypoints

    Get PDF
    Copy-move forgery is one of the most common types of tampering for digital images. Detection methods generally use block-matching approaches, which first divide the image into overlapping blocks and then extract and compare features to find similar ones, or point-based approaches, in which relevant keypoints are extracted and matched to each other to find similar areas. In this paper, we present a very novel hybrid approach, which compares triangles rather than blocks, or single points. Interest points are extracted from the image, and objects are modeled as a set of connected triangles built onto these points. Triangles are matched according to their shapes (inner angles), their content (color information), and the local feature vectors extracted onto the vertices of the triangles. Our methods are designed to be robust to geometric transformations. Results are compared with a state-of-the-art block matching method and a point-based method. Furthermore, our data set is available for use by academic researchers

    Multi-Directional Scratch Detection and Restoration in Digitized Images

    Get PDF
    Line scratches are common defects in old archived videos, but similar imperfections may occur in printed images, in most cases by reason of improper handling or inaccurate preservation of the support. Once an image is digitized, its defects become part of that image. Many state-of-the-art papers deal with long, thin, vertical lines in old movie frames, by exploiting both spatial and temporal information. In this paper we aim to face with a more challenging and general problem: the analysis of line scratches in still images, regardless of their orientation, color, and shape. We present a detection/restoration method to process this defect
    • …
    corecore